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We give an upper bound for the high-energy behavior of the Lyapunov 
exponent of the one-dimensional Schr6dinger equation. We relate this behavior 
to the diffrentiability properties of the potential. As an application, this result 
provides an upper bound for the asymptotic length of the gaps of the 
Schr6dinger equation. 
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1. I N T R O D U C T I O N  

We study the high-energy behavior of the one-dimensional Schr6dinger 
equation. Although we do not suppose that the potential admits definite 
limits at infinity, we prove an adiabatic theorem which provides bounds on 
the growth rate of the solutions of the Schr6dinger equation. In particular, 
when the Lyapunov exponent exists, we bound it in terms of the energy. 
This situation is of particular interest in solid-state physics, where the 
potential is supposed to obey some homogeneity condition; it may be 
periodic, in which case we bound the Lyapunov exponent in the gaps and 
consequently the length of the gaps (Remark 4). The potential may also be 
given as a random process, for instance, in the theory of disordered 
systems; in this later case the Schr6dinger operator may (and often does) 
present a spectral resolution in term of exponentially localized eigenvectors: 
our results provide a bound on this exponential decay rate. 

We shall prove the following theorem, which is, in the linear case, an 
extension of a Neishtadt's adiabatic theorem(l~: 
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T h e o r e m .  Let g'(x) be a real function satisfying the Schr6dinger 
equation on ~: 

-d2~[S/dx 2 + V(x )"  tit(x) = EtI t (x)  (1) 

where V and all its k first derivatives are continuous and uniformly boun- 
ded; then there exists a constant C such that for sufficiently large energy E 

lira sup (2Ix[) -1 [log[~2(x)+g~'Z(x)][<CE-Ik+w2 (2) 

Furthermore, if V is analytic and uniformly bounded in a strip around the 
real axis, then CE -(k+ 1)/2 may be replaced by C exp(-C'E1/2).  

Remark 1. In various cases one knows the limit of the left-hand side 
of (2) to exist (for instance, with probability one if V is a random ergodic 
process) and to be the so-called Lyapunov exponent. Thus (2) in these 
cases is a rigorous upper bound for the Lyapunov exponent in the high- 
energy limit. This in turn provides the lower bound E (k+1)/2 for the 
localization length of the eigenstates of (1). 

Remark 2. This special case of a linear second-order differential 
equation has been studied, but in a different situation in relation to the 
WKB approach when the potential admits defined limits at infinity. At the 
opposite our situation can recover the case of an infinite number of turning 
points in the WKB method. 

Remark 3. We expect that the bound proven in this paper provides 
in many cases the exact asymptotic behavior for the Lyapunov exponent. 
Furthermore, this behavior is already known when V is only uniformly 
bounded: the Lyapunov exponent is bounded by CE 1/2. 

Remark 4. Let us consider a Schr6dinger equation (1) with a 
periodic potential V. It is well known that the spectrum consists of a 
sequence of energy bands in which any solution ~ is bounded. Between 
these bands we (generically 12)) have gaps in which any 7 j increases 
exponentially at + m or - m  at a rate we denote 7(E). Furthermore, if 
d(E) is the distance from E to the spectrum of the Schr6dinger operator, by 
Simon's result (Ref. 3, Theorem 4.1) 7 satisfies 

d(E) ~ 7(E) 2 + DT(E)(E ~/2 + 1 ) 

where D is a constant depending only on V. Thus, by our theorem the 
length L of a gap is bounded by D'E -k/2 if V is C k (in the sense given in 
the theorem) and by e -~' /2 if V is analytic. In fact this bound does not 
require the periodicity of the potential and our result is the first one in this 
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general frame. In others words, since the energy of the nth gap is of order 
n 2, the length L,  of the nth gap satisfies 

L, <~ D"n -k (resp. e -~ ' )  

when V is C k (resp. analytic). In the C k periodic case an analogous result 
was already obtained 16) for even k and under Lipschitz conditions. The 
analytic periodic case was solved by Grigis. (7) In the very special case of the 
Mathieu equation, Avron and Simon (a) have obtained the exact behavior 
L ,  -.~ n -~ 

Equation (1) is equivalent to the equation of motion of a parametric 
oscillator. Thus, our results may be restated in terms of the theory of 
adiabatic perturbations of integrable Hamiltonian systems. Let us consider 
a family of Hamiltonians H(p, q; 2), where p and q stand for the momen- 
tum and position variables and )~ is a real parameter. For  fixed 2 the 
system is integrable and we denote by 1(2) the action variable. Now let us 
suppose that 2 is a slowly varying function of the time: 2 = 2(et); then one 
expects that the action variable I remains almost constant. For  instance, ~8) 
if one varies smoothly in time the frequency of harmonic oscillator, one 
expects the almost constancy of the action variable, that is, of the ratio 
H()t)/co()c), where o)(2) is the frequency of the oscillator. In that direction 
m a n y  exact results have been obtained (mainly) by Russian 
mat]hematicians. One can find useful references in Arnold's book(5~; we are 
especially indebted to the results obtained by Neishtadt. (1) In our case, tak- 
ing into account the linearity of the problem, we can extend Neishtadt's 
results and bound the growth rate of the logarithm of the adiabatic 
invariant. 

2. PROOF OF THE THEOREM 

First we choose the new variable t = El/2x; then Eq. (1) becomes 

- ~ " +  V(tE -~/2) E - I ~ =  7 t (3) 

Now (3) is equivalent to the Hamiltonian system 

Ho( p, q, t) = p2 + [1 - r(et) e21 q2 (4) 

where e = E-1/2, q = ~, and p = gt,. For  "fixed t" the system is integrable in 
terms of the action-angle variables I =  Ho/co and tan ~o = coq/p, where co is 
the frequency (1 - V~2) 1/2. Notice that I is just [(d~/dx)2/E+ co2gt2]/co, 
which is equivalent to the argument of the logarithm in (2) in the sense 

lira sup 1/Ix] log(gt2+ ~u'Z)=lim sup 1~ix[ l o g /  (5) 
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The new Hami l t on i an  is 

H(I, ~p; t) = I[co + (of /2m) sin 2~p] = / c o [  1 + f(q~, t ) ]  (6) 

where m'  is of order  e 3. We suppose  there that  V is differentiable and 
satisfies E >  IV] ~.  At this step, we have 

dI/dt = -OH/~?~o = -[co'/co cos 2qo] (7) 

that  is, 

d l o g  I/dt = -r cos 2q~ (8) 

which provides the announced  result as soon as V is C 1. N o w  for a 
C k (k/> 2) potent ia l  the p roof  relies on the following lemma:  

k e m m a  1. Consider  the Hami l t on i an  system 

H(I, qo; t ) - - I co (e t ) [  1 + ePf(cp, et)] (9) 

where co and f as their nth first derivatives (with respect to (p and et) are 
uniformly bounded  and C 1 with respect to ~o for q0 �9 [0, 2rc] and t �9 ~, and 
f has zero mean  value with respect  to q~ for all t. Then  for e in a 
ne ighborhood  of 0 there exists a canonical  t ransform that  maps  (9) onto  
the following system: 

Hi ( I , ,  (01 ; t) = 11 col(et)[ 1 + e p+ lfl (gO1, 8t)] (10) 

where col and  f l  as their ( n - 1 ) t h  first derivatives are uniformly bounded  
and C 1 with respect  to q~l and f l  has zero mean  value with respect to q~ for 
all c 

Proof  of  Lemma 1. Fol lowing Neish tadt ' s  idea, we int roduce the 
generat ing funct ion of the canonical  t ransform S(I , ,  ~0): 

which provides 

S(I i ,  go)= I i [ q ~ - - f 2  . . . . .  t ePf(qo, et) do]  (11) 

I =  aS( l  1, ~p)/0q~ = 1111 - ePf(q~, gt)] (12) 

~o 1 = ~?S(I1, ~o)/aI, = qo - ePf(~o, et) d~o (13) 
= c o n s t  

We have to notice tha t  q)l is a function of q0 and t only, since S is linear 
with respect to 11 . Fo r  small ~ these changes of variables are convenient  by 
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the implicit functions theorem: (13) shows that d(tgl/d(o (for fixed t) 
uniformly goes to one as e goes to zero. Furthermore, dcp~/dq) is a C" 
function (with respect to (p). The new Hamiltonian H~(II,  Cpl, t) is 

with 

H~(I~, go~, t ) = H ( I ~ ,  (p,, t ) - O S / O t = I ~ o ( 1  +ePf  ') (14) 

f ' =  -e"f2(~o, et)+co -~ f ;  a ' [ ~f(~o, at)/Ot] &o' 
- -  c o n s t  

(15) 

Hl(I~, ~o~, t) is again defined as in (9) with a new func t ionf '  of order Of/St, 
that is, ef  The ( n -  1)th first derivatives o f f '  with respect to t and ~ may 
be expressed in terms of the nth first derivatives of f with respect to t and 
~0. Thus, they are uniformly bounded and C ~ in cp; since for fixed t, (p~ is a 
C" function of ~0, they are also uniformly C ~ in cp~. In fact, to be con- 
venient, f '  should have zero mean value; this can be done by defining a 
new frequency o~: 

~o~ = (~o/2zr) ~ dq)l (1 + 8Pf ') (16) 

HI(I1, q~l, t) is now defined as in Lemma 1 with a function f l  satisfying the 
required conditions. | 

We now continue the main proof. Under the hypotheses of the 
theorem, the function f defined in (8) satisfies the hypotheses of Lemma 1 
with p =  3 and n = k -  1. Thus, we may apply Lemma 1 a total of k -  1 
times to obtain a Hamiltonian Hk: 

Hk(Ik,  Oh; t ) =  Ikcnk(et)[1 + e~+2fk(cpk, et)] (17) 

The equation of motion for I is now 

and yields 

d l k / d t  = - I ~  co~ e ~ + 2 a f k / & O k  (18) 

Ilog Ik( t )l < C(k ) e ~ + z Itl (19) 

Clearly, by (12), ]log(Ik/I)l is uniformly bounded; thus 

lira sup 1/Ix[ [loglJ =lira sup 1/]etl Iloglk[ 

<~ C(k) e k+ 1 (20) 

Together with (5), this yields the announced result when V is C ~. 
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We now turn to the analytic case. We suppose V is bounded and 
analytic in a strip around the real axis; we are going to use the same 
canonical transforms as in the C k case. Thus, now co and f [-defined as in 
(9) with p = 3]) are bounded and analytic in a strip (R, r) around the real 
axis {Im(et) < R, Im(~o) < r): 

[ ~ o - l l < t l  if l Im(e t ) l<R (21) 

If(q~, ~t)l < M  if ]Im(et)l < R  and IIm(~o)l < r  (22) 

To pursue the iteration of the canonical transforms, we need the following 
lemma: 

k e m m a  2. Let us assume that co and f i n  Lemma 1 satisfy (21) and 
(22); then co 1 and f l  are analytic in a strip (R 1 < R, rl = r-~PM2rc) and 
satisfy. 

1COl-- 11 < r/l; Ifl(fpl, ~t)[ < M1 (23) 

where r/a and Ma are given by 

M a = e  p 1M2+27zM(1-t/)  - 1 ( R - R a )  -1 (24) 

t/1 = tl + (1 + t/) e p+ IM a (25) 

Proof of  Lemma 2. The function f '  is still defined by (15) and, for 
(st, q~) in the strip (Ra < R, r), is bounded by 

f '  <~PM2 + 2rcM~(1-rl) 1 ( R _ R 1 ) - I  (26) 

The change of variable (13) is now analytic and the image of the strip 
{ I Im(q~)l < r } contains the strip { [Im(pa)l < r l = r - e PM2rc }. Thus, f '  as a 
function of q~a is bounded in this strip by (26); hence, f l  is bounded by 
e p - a M 2 + 2 z c M ( l _ t l ) - i  ( R _ R 1 )  1; the result for o) a follows easily. | 

Now the end of the proof is straightforward: we iterate this procedure 
N - 1  times, choosing R i - R i + I = R / N .  At the first step t/ was of order 
e2M. Let us suppose that (i) t/will remain smaller than, say, 1/2 and (ii) 
the first term in the right-hand side of (24) will remain smaller than the 
second one. We will have to check (i) and (ii) later. Then inequalities (24) 
and (25) can be simplified: 

t]i+ 1 < th + 2~24 + i M i +  1 (27) 

Mi+ 1 < 8~MiN/R (28) 

Hence Mj (resp. t/i) is smaller than (8~N/R)iM[resp.  e2M+ 16~zM~4N/ 
(R--8~Ne)] as soon as 8~eN/R< 1. For Me 2 sufficiently small and 
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8~zeN/R < 1 the previous hypotheses are thus satisfied and M N_ 1 is now 
bounded by (81rN/R)N-1M. Now using (18), we have di N l/dt~ 
[U_le N+ IMN_~N/R; we see that the best estimate is provided by N ~  1/e 
such thateU+~Mu_~N/R~e ~/~. Once more, as in (9) and (10), we get 
that l o g / c a n n o t  increase (or decrease) faster than te -~/~, which is the 
announced result going back to the variables ~, gt,. | 
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